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Outline:
• How it works:

– STM

– AFM

• Applications for III-V semiconductors:
– STM

– AFM
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What is SPM ?
• Scanning Probe Microscopy :

The characterization of a sample by scanning its surface with 
a probe, at a small distance

As a result, only surface properties are observable
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How does SPM compare with other 
microscopy techniques ?

Microscope Optical Confocal Interfer
ence

SEM TEM STM AFM SNOM

XY 
resolution

400 
nm

150 nm 250 
nm

1 nm 0.1 nm 0.1 nm (0.1) 1-10 
nm

<50 nm

Z 
resolution

- 10 nm 0.1 nm - - 0.01 nm 0.01 nm (0.01nm)

Ambience air 
(liquid)

air 
(liquid)

air 
(liquid)

vacuum vacuum vacuum 
(air)

air (liquid) air

Sample 
preparation

none none none none / 
coating

polishing, 
ion milling

none / 
UHV 
cleaving

none none

Damage to 
sample

none none none Contami-
nation,(h
eating)

Contami-
nation, 
heating

none none 
(scratch)

none

Price (kFr) 5-30 50-200 50-200 200-700 500-2000 70-300 50-300 70-300
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Advantages of SPM
• 3D imaging

• High spatial and 
vertical resolutions

• No sample 
preparation

• Simple to operate

• Low-cost

• Main disadvantage : 
slow (5-20 min/image)



6

The main challange of SPM: How 
to get nm resolution?

Potential problems:

1. Tip size

2. High-resolution XY scanning

3. Non-destructive

4. Constant distance from sample

5. Vibrations

6. Thermal stability

Potential problems:

1. Tip size

2. High-resolution XY scanning

3. Non-destructive

4. Constant distance from sample

5. Vibrations

6. Thermal stability

Solutions:

1. Short-term interactions

2. Piezo scanner

3. Non-contact

4. Height feedback

5. Rigid structure, isolation

6. Compensation
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Let’s look at the solutions:
1. Short-term interactions: Do you know any?

• Quantum-mechanical electron tunneling: STM

• Van-der-Waals forces: AFM
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First working STM:
Binnig & Rohrer, 1982

G. Binning, H. Rohrer, Ch. Gerber, and E. Weibel,
Phys. Rev. Lett. 49, 57 (1982)

"Surface Studies by Scanning Tunneling Microscopy"
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Quantum Tunneling
• Electrons in metals fill up energy 

levels to the Fermi level, which is 
about 4.5-5.5 eV (the work function) 
below the Vacuum level.

• External potential between metals 
shifts the relative Fermi levels, so that 
electrons can pass from full (left) to 
empty (right) levels, but… the energy 
barrier is too high! 

• When the metals are close enough, 
electron wavefunctions can overlap 
and tunneling current flows
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Quantum Tunneling: statics

• Electron wavefunction is propagating in metal, but exponentially 
decaying in the vacuum barrier.

• The decay coefficient: » 11 nm-1

• The transmission coefficient is:  

α =
2mV0


=
2mΦ

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Quantum Tunneling: dynamics

• The current from the right metal to the left is given by:

• The net current is the difference:

Jl→r =
4πem2

h3
f (E)Dl (E)Dr (E + eV )T (E)dE

0

∞

∫

Jr→l =
4πem2

h3
f (E + eV )Dl (E)Dr (E + eV )T (E)dE

0

∞

∫

• When we apply a potential V between the 
metals, current will flow across the barrier.

• The current from the left metal to the right 
is given by ( f = Fermi distribution):

J = 4πem
2

h3
f (E)− f (E + eV )[ ]Dl (E)Dr (E + eV )T (E)dE

0

∞

∫
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Quantum Tunneling: current
• The current is:

• If the voltage is small relative to the barrier, we can use a 1st

order expansion for the Fermi distribution function and get:

• The I-V curve is linear, as in an Ohmic contact

J =σ 0Ve
−2d 2mΦ / ∝Ve−2αd σ 0 =

e2 2mΦ
h2d

Dl (EF )Dr (EF )α =
2mΦ


• The short range of tunneling (a »

11 nm-1) makes the current very 

sensitive to the distance: 

– Change of distance of one atomic 

monolayer = 0.3 nm, gives change 

of current by x1000! 

J = 4πem
2

h3
f (E)− f (E + eV )[ ]Dl (E)Dr (E + eV )T (E)dE

0

∞

∫
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Tunneling between plane and tip
• Tunneling current between plane and half-spherical tip of 

identical metals, for tip radii of 1 and 10 nm: apparent width is 
much smaller!
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Tunneling between plane and tip
• In a more realistic case, the 

random atomic nature of the 
tip will “promote” one atom to 
produce most tunneling 
current. Here the tip R=10 nm, 
h=0.1 nm, lattice constant 
0.56 nm

• The current through the 
lowest atom is bigger by 104

than the current from the next 
one!

• The real “tip” (atom) is not at 
zero, but it doesn’t matter! 1.E-04
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Tunneling as surface probe:
• We approach the sample with a 

sharp metallic tip, biased to a 
small potential (1-1000 mV)

• At a very close distance, 
tunneling current will start to 
flow between the tip's atoms 
and the samples' surface atoms

• This current is measurable (nA) 
at tip-sample distance of 1Å
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Tunneling between plane and tip
• At low temperatures, between plane and spherical tip of 

identical metals, we get the tunneling current:

• Where D = density of states at tip,

R = tip radius

• There is still exponential

dependence on distance

• Tip radius plays a secondary role

• DOS can be measured as well:

• STS = Scanning Tunneling Spectroscopy:
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Metal-semiconductor tunneling
• Tunneling between the metallic STM 

tip and a semiconductor shows the 

energy gap in the I/V curve (STS)

• In many cases the derivative dI/dV is 

plotted vs. V to show more clearly 

the DOS, states in the gap etc.

• Surface states (oxidation) can pin 

the Fermi level – UHV is needed
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The main challange of SPM: How 
to get nm resolution?

Potential problems:

1. Tip size

2. High-resolution XY scanning

3. Non-destructive

4. Constant distance from sample

5. Vibrations

6. Thermal stability

Solutions:

1. Short-term interactions

2. Piezo scanner

3. Non-contact

4. Height feedback

5. Rigid structure, isolation

6. Compensation
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High resolution: the piezo scanner
• The X-Y-Z relative movement between tip and sample  is 

controlled by a Piezoelectric Scanner with < 1Å precision

• During the scan, we need to measure and stabilize tip height:
– Measured through tunneling current (very sensitive!)

– Can be used to control tip height by a feedback loop

– Height is displayed as a 3D image
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The use of feedback :
• In STM, current varies exponentially with tip-sample distance

• A log amp gives signal inversely proportional to distance

• The signal is fed back to a Piezoelectric actuator, to keep the 
same current = same distance

• The piezo tracks the surface of the sample, giving a high-
resolution height map
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Types of piezo scanners: Tube
• All movements (X-Y-Z) can be achieved by a single tube 

scanner:
– Applying opposite voltages to pairs of electrodes bends the tube in one 

direction (X,Y)

– Applying voltage to the inner electrode makes the tube contract/expand 
(Z)

• Advantages of tube scanner:
– Simple, small, rigid, cheap (single part does all)

• Disadvantages of tube scanner:
– Non-linear (especially XY)

– Difficult to add position sensors

– All scan axes linked
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Types of piezo scanners: XYZ
• Cartesian movement is often achieved by using separate Z and XY 

scanners

• High-quality XY scanners are available, also with high-resolution position 
sensors (resistive or capacitive) to achieve linear scan

• Z piezo (used for the feedback!) is uncoupled from the XY scan
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The main challange of SPM: How 
to get nm resolution?

Potential problems:

1. Tip size

2. High-resolution XY scanning

3. Non-destructive

4. Constant distance from sample

5. Vibrations

6. Thermal stability

Solutions:

1. Short-term interactions

2. Piezo scanner

3. Non-contact

4. Height feedback

5. Rigid structure, isolation

6. Compensation
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STM construction
• On top of the scanner and tip, we need:

• Mechanical stabilization (vibrations!)

• Environment control (vacuum, low temperature)

UHV LT STM

Source: https://www.scientaomicron.com/en/products/scanning-probe-microscopy
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Vibrations
• Passive tables:

– Passive - needs only compressed air

– Can support very heavy weights

– No damping below 2-3 Hz – amplification at resonance

– Performance increases with frequency T ~ w-2

• Active tables:

– Small size, light weight

– Good attenuation at low frequencies

– Limited performance above 10 Hz

Source: TMC corp., http://www.techmfg.com
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STM tips

Which STM tip is better ?

Pt/Ir wire, diameter 0.2 mm, cut with wire cutter W wire, diameter 0.2 mm, electro-
etched in KOH solution
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STM tips
Answer: They give the same performance!

Cut STM tip
Etched STM tip

"Swiss" STM tip (Same, enlarged x108)

• Tip radius is not very important: rigidity is 

more important than tip radius!

• Exponential tunneling current 

dependence “selects” that only the very 

last atoms of the tip participate in the 

imaging
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STM Images
• STM images can resolve individual atoms, or parts of 

molecules, on surfaces – preferably under vacuum

STM Image of graphite atoms

More STM Images later …

STM Image of Si atoms
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Atomic Force Microscope: AFM
• Developed by Gerd Binnig (1984)

• Uses the Van-der-Waals force between 
tip and sample as short-term interaction

• Especially the repulsion force is very 
sensitive to distance:

F~z12 !
(almost as good as exponential)

and short-range (<1 nm)

• But: Van-der-Waals force are small: 
order of nN

• We need a sensitive force sensor -1
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AFM: How do we measure small 
forces (nN)?

• Solution: use the flexibility of 
the tip-carrying cantilever

• Material: Si
– Tough, flexible E= 2.105 N/cm2

– Easy to structure by photo-
lithography and chemical etching

• The force on the tip moves 
(flexes) the cantilever.
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How do we measure small forces 
(nN)?

• Deflection of a beam: δ = FL3/3EI

• For a typical Si cantilever (L=400 µm, 

b=20 µm, h=2 µm): δ = 0.2 µm/nN

• Next question:

How do we measure a small 
deflection?

Repulsion

100 µm

http://www.clag.org.uk/pics/beams/moment1.gif



32

How do we measure small 
deflections (nm)? With a laser!

 

LD

• A laser beam is reflected from the 

cantilever to a position-sensitive 

photodetector

• The detector signal is proportional to the tip 

displacement = force

• The tip is scanned over the sample (as in 

STM) to produce the image

• We saw that the deflection of the cantilever 

is: δ = FL3/3EI, typical 0.2 µm/nN

• The reflected laser beam moves by a 

distance: : δLD = δ.L/LD = FL2/3EILD

• Typical value (LD~20 mm): δLD = 10 µm/nN
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Operation of contact AFM
• The beam movement (10 µm/nN) is easily 

detectable by a 4-quadrant photodetector:

• SUM signal is used for beam alignment

• Y signal is used to detect the cantilever 

movement (zeroed before contact)

• X signal used to detect lateral forces

• Typical values: Beam diameter 1 mm, 

Prefl=10µW, gives a SUM signal of 10V. 

Difference of 10 µm/nN (1%) gives a 

difference signal of 0.1 V



34

Contact AFM feedback
• As in STM, feedback is used to keep the tip at a constant force

from the sample, the height is plotted as image.

• On flat surfaces (to a few nm), constant height can be 
maintained, and the force is displayed
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The other side of the force …
• The Van-der-Waals force between tip and sample:

• When the tip approaches, the force is attractive, then 
strongly repulsive

÷
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Attraction

RepulsionThe attractive force:
• Makes the tip “jump” to touch 

the surface quickly when 
approaching

• Makes the tip “stick” to the 
surface when retracting

• Result: hysteresis in tip 
movement !

This is most problematic 
in ambient air, as the 
sample and tip are covered by a thin (1 nm) water layer.
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Non-contact AFM: no sticking!
• To avoid the problems of tip sticking, non-contact

AFM is used.

• "Pure" non-contact: tip never touches the sample, 
oscillation amplitude is small

• Intermittent contact, or tapping: large amplitude, at 
every oscillation cycle the tip touches the sample.

 

 

 

µ/0 Kf =
• The cantilever is vibrated by a piezo at its 

resonance frequency:

where K = force constant, µ = cantilever mass

• The laser beam reflected onto the position-
sensitive detector moves at the resonance 
frequency

• The PSD signal has an AC component, 
showing the tip’s oscillatory motion

• At resonance, the transducer needs to supply 
minimum energy to maintain oscillations
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Feedback in non-contact AFM

• Changes in the vibrations’

PZT

sample

 

• In NC-AFM, usually frequency is used 
for feedback. In IC-AFM, usually the 
amplitude change is used

• Sometimes lock-in (phase) detection is 
used, e.g. to plot height + phase images

• What changes by tip-sample forces ?

– phase

– amplitude

– frequency
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Force, resolution in non-contact AFM

• Results:

– Contact AFM has the highest resolution (atomic, 

like STM), but uses high forces (1 µN- 1 nN) 

which can scratch the surface

– NC-AFM uses less force (1 pN-1 nN), good for 

delicate surfaces (polymers), but has lower 

resolution

– IC-AFM uses higher force (1 µN- 1 nN), good for 

hard and rough surfaces, has higher resolution

• NC and IC AFM use different force regimes:

– AFM works with repulsive forces, at close distance 

(<0.5 nm)

– NC-AFM works with the attractive force, at a larger tip-

sample distance (1-10 nm)

– IC_AFM works with the repulsive force, at smaller 

distance, like contact AFM (0.5-2 nm)
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Types of AFM cantilevers
• For contact mode, usually a long 

cantilever is used to increase sensitivity 

(low K).
– Typical values: K = 0.1-1 N/m, L = 250-400 µm

– Resonance frequency is low (50 kHz)

• For non-contact mode, usually a short 

cantilever is used to increase the resonance 

frequency. 
– Typical values: K=10 N/m, L = 100 µm

– f0 = 200-400 kHz

• Sometimes, two-beam cantilevers are 

used, e.g. to measure lateral forces
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Standard AFM tips
• Most AFM tips are made from Si, by photolithography and 

directional etching.

• The tip is pyramidal in shape, with height ~20 µm and sidewall 
angles of ~20° to the normal

• The standard tip radius is on the order of 5-10 nm

• In some cases Si3N4 is used

Si tip: Side view Si tip: Front view Si3N4 tip: Oblique view
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Special AFM tips
• For metrology : "elephant foot" to measure sidewalls

• Inclined tips to probe edges:

• Ultra-sharp tips, 
down to 1 nm

• Diamond tips for hardness testing and long life (low resolution!)

• Different coating on tips : conducting, magnetic etc.

• High aspect-ratio tips to 
probe trenches and holes
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Image processing
• SPM images are rarely perfect “as taken”

• “Basic” image processing:

– Removing sample tilt, scanner non-linearity, tip jumps, noise

• “Advanced” image processing:

– Filtering, deconvolution, finding & characterizing objects

• Measurements:
– Size, distance of features

– Line profiles & their characterization

– Roughness

• Calibration
– Scan (axes) calibration

– Tip characterization
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Basic Image Treatment
A newly-taken AFM image of a flat sample looks like this:

WHY ?
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Basic Image Treatment: plane-fit
The sample is never horizontal! A 10mm sample mounted with 

one side higher than the other by 0.1mm, will give an image slope 

of 100nm over a 10 µm scan!

"Before" "After"

The plane-fit correction: An 

average plane is calculated 

by LSQ fit of the image to: 

ax+by+cZ=0

This plane is 
subtracted from 
the image, to 
“planarize” it 
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2nd order plane-fit
• The piezo scanner can have non-

linearities (especially tube 

scanners), leading to changes in Z

values across the scanned plane

• In this case, a simple plane fit is 

not enough to correct the image, 

which is curved.

The 2nd-order (and sometimes 

even higher order) plane-fit 

correction subtracts from the 

image a LSQ-fitted curved plane

Caution: in some cases, high-

order plane-fit correction can 

remove real image features 

(e.g. sample undulations)

After 1st order planefit After 2nd order planefit
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Effect of the tip size on the Image
• The AFM tip is never atomically sharp 

(standard R~10 nm), especially if it's broken !

• The image is the result of a geometrical 

convolution of the tip and sample

• The tip size will increase the apparent step 

width, but not its height

• A blunt tip will not penetrate a deep trench –

a triangular image will result, shallower than 

the real depth.
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Effect of the tip size on the Image
• Example: Semi-circular tip, radius R, measures a molecule (or 

particle), radius r < R

• The apparent width is measures between the points where the 

tip touches the molecule from each side

• Geometrical calculation shows:

• Typical values: r = 1 nm, R=10 nm, giving w = 12 nm!

• The tip size will increase the apparent step width, but the height

is correct!

R

r

w/2

h

RrrRrRw 4)()(2 22 =--+=
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Example of tip deonvolution
• A square object (a) 

is scanned with a 
similar-size rounded 
tip (b).

• The resulting image 
(c) combines 
features of both

• The object can be 
partially restored by 
deconvolution (d)
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AFM calibration
• Special "calibration 

standards"
– Checkerboard pattern to 

calibrate XY scale, linearity

SEM picture of sample AFM image

• It's time-consuming to 
calibrate every tip –
useful only for critical 
applications (metrology)

SEM picture of sample reconstructed
tip shape

– Sharp “tips” to calibrate 
tip shape
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Advanced modes - SPM
• The AFM can measure small 

forces (< 1 nN), so any 
phenomenon that can be 
translated to force can thus 
be measured by the AFM

• The tip is very close to the 
sample, so it can be used to 
interact with the sample while 
scanning

• The general name : Scanning 
probe microscopy - SPM

• Friction : LF-AFM

• Electric field : EFM

• Voltage : KF-AFM

• Current : I-AFM, CAFM

• (Spreading) Resistance : SSRM

• Capacitance : SCM

• Magnetic field : MFM

• Temperature

• Magnetic field (Hall)

• Chemical interaction

• Optical excitation and detection 
: SNOM

• Lithography
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STM Applications
• STM is most useful in LT/UHV:

– Naturally forming oxide layer distorts surface states

– Water layer interferes with tunneling current

– Thermally induced atomic vibrations distort image

• Many MBE growth systems have a UHV STM (sometimes LT STM) coupled 
to the growth chamber

• STM can show growth morphology, electrical properties, doping, on the 
atomic scale

Au (111) atoms (3x3 nm) Au (111) atoms (17x17 nm) Ag (111) atoms
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Some STM Images (1)

STM Images of molecules. Right – tip 
is modified to interact with specific 

part of molecule
BSCO HTSC 

superconductor at 4K

Co atoms (dark) on Au 
(111) surface Co atoms (dark) on Ag surface
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Some STM Images (2)

Stacked InGaAs quantum dots

Si atoms

Graphite atoms
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Some STM Images (3)

Fe atoms manipulated 
by STM

Note the quantum 
interference patterns !

The rat race …
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Detailed example of STM imaging 

Sample structure:

• GaAs growth by MBE

• AlGaAs barriers at extremities 

(“garbage collection”) 

• Four “stacks”, each of five 0.5 

ML InAs layers in GaAs

• Different spacing between 

InAs layers in stack: 1.5-16 

ML.

• Sample cleaved in UHV, STM 

of cross-section (XSTM)

• InAs brighter than GaAs

Atomic structure and optical properties of InAs submonolayer depositions in GaAs,

A. Lenz, H. Eisele, J. Becker, J.-H. Schulze, T. D. Germann, F. Luckert, K. Pötschke, E. 

Lenz, L. Ivanova, A. Strittmatter, D. Bimberg, U. W. Pohl, M. Dähne,

B. JVST. B 29, 04D104 (2011)

LT/UHV XSTM image
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XSTM images of stack 1 (16ML)
• We can distinguish single atoms!

• InAs atoms are brighter than GaAs:
• Strain release after cleave pushes atoms 

above surface

• Higher electron state density -> higher 
tunneling current 

• InAs atoms tend to “cluster” (fig.b) in height: 
evidence for some diffusion in the bulk
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XSTM images of stack 1 (16ML) 
• We can quantify the In contents 

by measuring local lattice 
parameter between rows 
(averaged along the rows)

• Accuracy: ~1 pm!
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XSTM images of stack 2 (4ML) 
• The same can be done 

on a stack with smaller 
distance between inAs
layers, leading to denser 
clustering
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AFM Applications
• AFM is used more frequently than STM:

– Easier to use and to obtain an image

– Can work at ambient air/temperature

• Uses of AFM in characterization:

– Substrate characterization before growth (especially non-planar 

substrates)

– Growth surface characterization (morphology)

– Cross-sectional imaging (layer structure)

– Advanced electrical modes (doping)
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AFM atomic resolution Images
• AFM is also capable to produce atomic resolution images :

Sub-atomic resolution 
by AFM

Graphite

GaAs cross-section

Silicon
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Substrate characterization
• Example: etched V-groove substrate

• The quality of surfaces is easily determined by AFM
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Surface characterization
• Example: monolayer steps on GaAs structures

• The substrate misorientation angle determines the growth 
mode:  step-flow, step-bunching,     multi-step bunching

 

Exact 0.3°B 0.6°B 

5µm 
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Surface characterization
• Example: monolayer steps and dislocations on GaN layers

Images of GaN layer on Sapphire by AFM
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Surface characterization
• Example: monolayer step orientation on GaAs (misoriented

0.3°B) near a deep V-groove 

GaAs step orientation by AFM

 

Surface 
profiles
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Cross-sectional characterization
• Oxidation rate in air of 

GaAs/AlxGa1-xAs, depends on Al 
contents x. 

• After 1 hr the oxide reaches finite 
thickness, depending only on 
composition

• GaAs is darker than AlAs

• InAs and InP oxidize even less 
than GaAs

AFM image of multi-
layer AlGaAs sample
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Cross-sectional imaging of QWRs
• High-resolution AFM can show 

small (a few nm) nanostructures 
like GaAs/AlGaAs QWRs

• Resolution is almost as in TEM, 
with short sample preparation

InGaAs grwoth in GaAs

GaAs/AlGaAs QWRs
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Exemple : cross-sectional
growth study in V/U grooves

• We study the growth of 
GaAs/AlGaAs layers in a 
variable-shape V/U groove

• SEM and AFM images of 
the substrate show the 
profile.
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Sequential cross-section
• The groove pattern is 

written at an angle (1.15°) 
to the crystal plane

• Result : a single cleave (at 
a crystal plane) moves 
gradually between 
successive grooves

• Successive grooves are 
20 nm apart – this is the 
resolution along the 
structure
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Sequential cross-section results
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Top view of 3 layers

• Following to the cross-sectional 
measurements, growth of the corresponding 
thickness gives a similar top view image.
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Cross-sectional imaging of QDs
• We grow QDs in pyramidal pits etched in (111)B GaAs 

substrates :

• After growth, the pits show vicinal {111}A planes 

1µm

(111)B

{111}A

1µm

(111)B

{111}A

as etched {111}Aas etched {111}A

vicinal {111}A vicinal {111}A 
after growthafter growth

as etched {111}Aas etched {111}A

vicinal {111}A vicinal {111}A 
after growthafter growth
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Cross-sectional imaging of QDs
• An AFM cross-sectional 

images of a series of 
AlGaAs/GaAs layers grown 
in a large (5 µm) pit.

as etched {111}Aas etched {111}A

vicinal {111}A vicinal {111}A 
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Cross-sectional imaging of QDs
• A series of identical QDs 

are grown in line at a small 
angle to the crystal axis

• A single cleave enables a 
series of cuts into the dot 
structure

• The 3D structure can be 
reconstructed
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Advanced AFM modes
• EFM and SCM can show doping structures

• SSRM can be used to measure doping

• Special KF-EFM can be used to measure surface states
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STM and AFM lithography
• The small forces between tip 

and sample can be used to 
move atoms and molecules

• At low temperatures, Ar or 
metal atoms can be 
adsorbed on an atomically 
flat metallic surface (Ag, Cu) 
and manipulated by STM

• Artificial structures can be 
constructed … vary slowly

• Note the quantum-mechanical interference !
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Examples of STM lithography
• From the labs of 

you-know-who…
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AFM lithography
• AFM can be used for nano-lithography in several ways:

– The AFM tip can scratch or indent soft surfaces, e.g. a PMMA layer on 
Si, which is then used as template for etching, deposition, etc.

– A voltage applied between tip and sample can oxidize a metallic (Ti) 
layer or the surface of a semiconductor (GaAs), forming isolated regions

– The AFM tip can directly move molecules, nanoparticles

0.5 µm
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Summary
• The field of SPM has developed in 20 years into a multitude of 

surface characterization techniques

• AFM and its derivatives are simple and useful for 
characterization of semiconductors

• Cross-sectional imaging can reveal the insides of structures

• Industrial applications are growing, limited by AFM speed
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Thank you !

… and may the 
atomic force be with 

you !
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